

Shigeru Fujii (FURUKAWA ELECTRIC CO.,LTD.) Hideo Tanaka (VISCAS Corporation)

Sub C in 2013 Fall ICC Meeting

Power transmission system for "Fukushima FORWARD Project" -- Power cable system for offshore floating type wind farm pilot plant --

Project Location

Tsunami Damaged Area

March 11. 2011, extra large earthquake took place in East–North Japan and resulted extremely severe damage in that area as well as Fukushima #1 nuclear P/S.

Project Area

Project Target

> Offshore floating wind farm project Introduction of new renewable energy Trial project of total system verification ✓ Potential availability of wind energy in Japanese EEZ To help industrial revival of Tsunamidamaged regions in Fukushima Prefecture > To be performed as consortium project financed by Japanese government

Project formation

Fukushima Offshore Wind Farm Consortium

Project Outline (1)

Off shore facilities ---- Final system

Floating substation

Advanced spar Compact semisubmersible floating structure V-type semisubmersible floating structure

Source : Fukushima Offshore Wind Farm Consortium

Source : Fukushima Offshore Wind Farm Consortium

Development of Riser Cable

Cigre TB-490

JEC-3408

Cigre Electra No.171

Target characteristics.		
Target characteristics		
 Meet allowable tension and minimum bending radius in floating condition 		
 Floating part of the cable should not touch the sea bed Cable should not be kinked 		
Similar to windmill or floating structure		

Wave conditions.

+

Item	Adoption value
The 50-year-period-return value associated with a storm wave	Significant wave height(note) 11.71 m
	Significant wave period 13 sec.
Sea current	1.5 m/s (including drift current)

(Note) The average wave height is defined as the average values from the highest record and the consecutive values of 1/3 measurements of the total measurements recorded of the period of recording (for example 20 min) at a certain point.

Outline Spec. of Riser Cables

	Unit	66kV	22kV
Outer Diameter of Cable	mm	175	150
Cable Weight	kg/m (in air)	53	43
Moisture/Water barrier		Corrugated Stainless Steel Sheath	Stainless Steel Foil Laminated Tape
Optical Fiber Unit		8 fibers x 3 unit	8 fibers x 1 unit
Steel Armor		Two L	ayers

Important Aspects of Riser Cable System Development

> 22kV Riser Cable

- Moisture/Water barrier structure and its properties
- Mechanical properties for dynamic movements
- > 66kV Riser Cable
 - Mechanical properties for dynamic movements
- > Transition Joint (66kV Riser to Submarine)
 - Water pressure resistance
 - Tensile strength on conductor joint sleeve as well as whole structure

Design of 66kV Riser Cable

Water Blocking Structure with Corrugated

Stainless Steel Sheath

Conductor
Conductor screen
XLPE Insulation
Insulation screer
Metallic screen
Metallic Sheath
Inner jacket (P
Filler
Bedding
Armor
Outer jacket (PE)
Optical fiber unit

3 x 100 mm² Conductor **XLPE** Insulation 11 mm creen Inner PE jacket 3.5 mm Galvanized steel heath Armour wire (6.0 mm) et (PE) Outer PE jacket 6 mm Outer diameter 175 mm Weight 53 kg/m in air

Installed cable length: 860m

66kV Riser Cable

22kV Riser Cable

Laminated Tape

Water Blocking Structure with Stainless Steel Foil

Conductor	3 x 150 mm ²
XLPE Insulation	6 mm
Metallic sheath	Stainless steel foil laminated tape(0.6mm)
Inner PE jacket	3.5 mm
Armour	Galvanized steel wire (6.0 mm)
Outer PE jacket	6 mm
Outer diameter	147 mm
Weight	43 kg/m in air

22kV Riser Cable

Design of 66kV transition joint between riser and submarine cable

17

Rigid joint worked on the laying vessel

66kV transition joint between riser and submarine cable

66kV transition joint on the laying vessel

Design of 66kV submarine cable

C	or	าต	uc	to	or	

Conductor screen XLPE Insulation Insulation screen Extruded lead alloy sheath

Filler

Bedding

Armor

Serving

Optical fiber unit

Conductor	3 x 100 mm ²
XLPE Insulation	11 mm
Metallic sheath	Extruded lead alloy (2 mm)
Armour	Galvanized steel wire (6.0 mm)
Outer diameter	123 mm
Weight	32 kg/m in air

Project Schedule 1st stage project completed

Cable production: ~2013 Summer \succ Riser cable installation: ~2013 August-September > System commissioning: 2013 October > 1st stage project in operation: 2013 November~

Riser Cables Installation (1)

Laying vessel

Chinese finger

66kV riser laying at S/S

Cable turn table

Bend stiffner

Riser Cables Installation (2)

2MW Wind turbine

22kV riser laying at S/S

22kV riser laying at turbine

22kV riser below turbine

Floating S/S

Riser Cables Installation (3)

Transition joint on the vessel

Joint laying

Joint is going into sea

Joint on the sea bed

Riser Cables Installation (4)

> On-site test for final Inspection

66kV cables	DC 151.8kV x 10min. Passed
22kV cables	DC 57.5kV x 10min. Passed

On-site test for 66kV Cable

2nd Stage Project Schedule

Thank you for your attention!

 References: [1] Fujii, et. al.; "The Development of the Power Transmission System for Fukushima FORWARD Project", Furukawa Review 43, (March 2013)
 [2] Fukushima Offshore Wind Farm Consortium, Brochure on Fukushima FORWARD Project

This research is carried out as a part of Fukushima floating offshore wind farm demonstration project funded by the Ministry of Economy, Trade and Industry.

The authors wish to express their deepest gratitude to the concerned parties for their assistance during this study. 28