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Abstract: This study investigates the sectional loads on an elastic semi-submersible platform for a
2 MW FOWT (floating offshore wind turbine) used in the Fukushima demonstration project. A water
tank test is firstly carried out with an elastic model to study the dynamic responses and sectional
loads of the platform in regular and irregular waves. Numerical simulations are then performed using
multiple hydrodynamic bodies connected by elastic beams. The dynamic responses of the elastic
model are compared to those of a rigid model to clarify the influence of the structural stiffness on the
platform motion and mooring tension. The predicted sectional loads on the deck, brace and pontoon
by the proposed nonlinear hydrodynamic models show good agreement with the experimental data
obtained from the water tank test and a simplified formula is proposed to evaluate the distribution
of the moments on the platform. Finally, the structural optimization of the elastic semi-submersible
platform is conducted. The sectional moments and fatigue loadings on the pontoons are significantly
reduced using the strut between the pontoons since the horizontal wave loads on the side column are
dominant and the vertical wave loads acting on the platform are relatively small due to the deep draft.

Keywords: semi-submersible floating platform; elastic model; dynamic response; sectional loads;
structural optimization

1. Introduction

Floating offshore wind turbines (FOWTs) have been considered the best way to
harvest wind energy in deep water regions. Compared to a bottom-fixed foundation,
a floating platform has fewer constraints regarding water depth and soil conditions. For
FOWTs, however, the high costs associated with the design, construction, installation and
maintenance are problems that need to be solved. One of the strategies to reduce the
levelized cost of energy is increasing power generation [1] and decreasing the amount
of steel used for the platform [2], which implies that a larger wind turbine and flexible
platform are designed. Thereafore, structure analysis and optimization for the platform are
critical for cost reduction and safe design.

Some aero-hydro-servo-elastic tools have been developed for the prediction of the
dynamic responses of platform and mooring lines [3,4]. The linear hydrodynamic force
coefficients of the platform have been obtained by a potential theory and presented as
the matrices of integrated hydrodynamic force coefficients for a rigid platform with six
degrees of freedom, which have been used in research. However, since the elastic responses
of the platform cannot be captured by a rigid body, the distributed loads and the elastic
models were proposed for structural analysis of the platform. Borg et al. [5,6] investigated
the hydro-elastic interactions between the flexible floating platform and fluid by using
structural modal analysis and boundary element method (BEM). However, this study
was not validated by experiments. Silva de Souza and Bachynski [7] concluded that the
hydroelasticity had negligible consequences for motion and load responses for a TLP
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FOWT. The sectional loads of the element of the platform can be easily assessed, as shown
in Ishihara et al. [8] and Suzuki [9–11] when the Morison’s equation was used to estimate
the hydrodynamic load on each element. Campos et al. [12] utilized Morison’s equation
to study the interaction between the wind turbine and the platform for a spar FOWT.
Morison’s equation performs well when the elements of the platform are slender, while it
has a limitation on the evaluation of diffraction force when the diameter of a cylinder is
five times larger than the wavelength, as mentioned by Faltinsen [13]. It is inapplicable
for some structures with large volumes where the diffraction loads are notable, such as
Ideol’s FOWT [14] and an advanced spar FOWT used in the Fukushima demonstration
project [15].

The elastic response is critical for the design of floating wind turbines and platforms,
especially when the wave frequencies are close to the eigenfrequencies, as pointed out by
Lamei and Hayatdavoodi [16]. Zhang and Ishihara [17] found that the natural frequencies
of a floating wind turbine with rigid and elastic platforms were different and the elasticity of
the platform should be considered in the design of a wind turbine tower. To consider more
accurate and efficient responses of the elastic platform, the distributed hydrodynamic loads
obtained from BEM were widely used without consideration of hydroelasticity [18–24].
In this approach, the platform was separated into multiple bodies connected by elastic
beam elements. The hydrostatic and hydrodynamic loading of each body is integrated
from pressure on the body surface by BEM and applied to the reference point of each
body. Guignier et al. [18] compared the dynamic motion of a single body model and
a multibody model based on the platform and observed little difference between the
motions of the two models. Kvittem and Moan [19] investigated the fatigue damage of
the braces considering time history of structural response where Morison’s equation was
used to simulate loads on braces and BEM was applied for load prediction of columns.
Luan et al. [20–22] systematically studied the motion and sectional loads on a concept
semi-submersible FOWT with the rectangular cylinders used as pontoons. They concluded
that the motion and sectional loads by the multibody model showed good agreement with
experiments in the combined wave and wind conditions. However, the distribution of
sectional load on the platform was not examined for the pontoon designed with variable
cross sections of elements as shown in the Fukushima demonstration project [25]. Moreover,
the nonlinear hydrodynamic coefficient models considering the effect of Reynolds and
Keulegan–Carpenter (KC) numbers for the multibody have not been proposed yet.

The semi-submersible FOWT usually uses side columns to provide sufficient stability.
In the early stage of development for the semi-submersible platform, braces and decks
were widely used. In the Fukushima demonstration project [25], the 2 MW wind turbine
“Fukushima Mirai” was a four-column semi-submersible FOWT and included three side
columns and a center column. The side columns are connected to the center column by
the pontoon, brace and deck to form an integrated structure. WindFloat [26] is another
well-known floating platform using braces and decks for connecting columns. Recently, a
semi-submersible platform without braces and decks, in which columns are connected by
the pontoon only, was proposed to reduce costs and simplify the manufacturing process,
such as the 7 MW FOWT “Fukushima Shimpuu” [27], which is a semi-submersible platform
with three square side columns connected by rectangular pontoons. However, cracks were
found on the pontoons during demonstration due to fatigue. This indicates that the elastic
response prediction and structural analysis on the element of the platform is significant for
cost reduction and safe design.

This study investigates the sectional load on a semi-submersible platform used in the
Fukushima demonstration project. In Section 2, the geometry and structural information of
the platform are described. The hydrodynamic coefficients for the multiple hydrodynamic
bodies and the numerical model considering the elastic beams are developed. In Section
3, a water tank test is carried out with the elastic pontoon, brace and deck. The dynamic
response of platform motion and sectional loads on the pontoon, brace and deck are
analyzed and validated by the water tank test in regular and irregular waves. A formula
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is proposed to estimate the distribution of sectional loads on the elements. The sectional
loads on the pontoons are analyzed based on the four platforms, with and without struts
connecting the pontoons, for the structural optimization of the platform and fatigue load
reduction of the pontoon. Finally, the conclusions obtained from this study are presented
in Section 4.

2. Models

The dimension and mass properties of a 1:60 scale elastic semi-submersible platform,
which is used in the water tank tests and numerical simulations to investigate the dynamic
responses and the sectional loadings of the platform, are described in Section 2.1. Section
2.2 proposes the formulae to evaluate the integrated nonlinear hydrodynamic coefficients
for the multibody. Finally, the numerical model for the dynamic analysis of the platform
and the hydrodynamic force models used in this study are summarized in Section 2.3.

2.1. Description of a 1:60 Scale Elastic Platform Model

To investigate the dynamic response of the floating platform and the sectional loadings
on the elements, a water tank test was carried out based on an elastic platform model. This
floating platform corresponds to the 2 MW semi-submersible FOWT used in the Fukushima
demonstration project. The model is scaled down by Froude scaling law. For the stiffness,
it is calculated by Kmodel = Kprototype/λ5, in which Kmodel and Kprototype are the stiffness of
model and prototype, and λ is the scaling factor and equals 60. The platform comprises a
center column and three side columns connected to the central column by pontoons, braces
and decks. The pontoons are rectangular cylinders with variable width. Braces and decks
are circular cylinders. The skirts are installed on the pontoons and heave plates to reduce
the heave motion as shown in Figure 1. The origin of the right-handed coordinate system
is defined at the center of the center column on the water plane with a positive X in the
direction of wave propagation and Z upward. The local x and y axes on the pontoon, brace
and deck are presented in Figure 2. The local z axis is in the axial direction of the element.
Table 1 lists a summary of the dimensions of the laboratory scale platform.

Table 1. Dimension and hydrostatic properties of the semi-submersible platform.

Elements Dimension (m)

Draft of the platform 0.2667
Height of central column (Hcc) and side columns (Hsc) 0.4667

Diameter of central column (Dcc) 0.0823
Diameter of side columns (Dsc) 0.1250

Height of heave plate (HHp) and pontoon (HHp) 0.0667
Diameter of heave plate (DHp) 0.2333

Width of pontoon 0.05~0.10
Length of pontoon (LPn) 0.2827

Diameter of brace (Dbrace) 0.0375
Length of brace (Lbrace) 0.3887

Height of deck 0.0375
Width of deck 0.0375~0.0608

Center of gravity below still water level −0.0687
Radius of gyration Kxx 0.370
Radius of gyration Kyy 0.374
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Two different numerical models are adopted for the platform in Orcaflex [28]. One
of them assumes the hull of the platform is a fully rigid structure and hydrodynamic
loads are given to a reference point. This model is hereafter named the rigid model and
is analyzed for the motion and mooring tension of the platform. The other model, based
on the multiple hydrodynamic bodies, assumes the pontoon (Pn-2), brace (Br-2) and deck
(Deck-2) as elastic beams, modeled with finite elements. This model will be referred to
as an elastic model and is used to predict the sectional loads on the given sections and
dynamic responses. The structural elements in the elastic model, except for Pn-2, Br-2 and
Deck-2, are considered as rigid bodies. Although the stiffness of the platform has an effect
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on the natural frequency of the tower as mentioned by Zhang and Ishihara [17] and has an
impact on the bending moment at the tower base as pointed out by Yamaguchi et al. [29],
the elasticity of tower is neglected due to the high stiffness of the platform. In this study,
the structural responses of the pontoon (Pn-2), brace (Br-2) and deck (Deck-2) are focused
on, since the stiffness of central and side columns are much higher than those of connecting
elements.

Figure 3 displays the elastic beams and multiple hydrodynamic bodies used in the
water tank test and the numerical simulation. The Pn-2, Br-2 and Deck-2 connected to the
central column (CC) and side column (SC-2) are built as the elastic elements by the square
steel beams, while the other parts of the platform are modeled as the rigid structures shown
as Figure 3a in the water tank test. In the numerical simulation, the elastic model of the
platform is separated into five bodies, which are connected by three elastic beams as shown
by the dashed lines in Figure 3b. Body 1 includes CC, SC-1, SC-3 and respective braces,
decks and pontoons. Body-2 consists of SC-2 and Hp-2. The points in Figure 3b represent
the reference point of each body. For each elastic beam, the bending moments at the three
sections as defined in Figure 3a are measured in the water tank test and are predicted in the
numerical simulation. Table 2 shows the stiffness properties of each elastic beam. Table 3
lists the structural properties of each body, such as mass, the center of gravity and moment
of inertia. The origin of the local coordinate system is located at the center of gravity of
each body. The similarities for the mass and moment of inertia are achieved by scaling
dimensions of columns, pontoons, braces and decks and adjusting weight distribution. The
wind turbines and nacelle are simplified as a rigid pole to consider their mass and moment
of inertia as shown in Section 3.1.
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Figure 3. Elastic models of the platform used in the water tank test and the numerical simulation.

Table 2. Stiffness properties of the elastic beam in the laboratory-scale model.

EIxx (Nm2) EIyy (Nm2) EA (N) GJ (Nm2/rad)

Pontoon 193.00 277.92 2.32 × 107 213.08
Brace 20.80 20.84 6.95 × 106 13.52
Deck 31.10 33.10 8.11 × 106 24.78
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Table 3. Structural properties of each body.

Mass (kg)
Center of Gravity (m) Moment of Inertia (kg m2)

X Y Z Ixx Iyy Izz Ixy Iyz Izx

Body1 14.972 −0.074 −0.147 −0.045 1.452 2.196 1.917 0.671 −0.040 −0.108
Body2 4.239 0.237 0.411 −0.098 0.188 0.186 0.019 −0.002 0.000 0.000

Body3 (Pn-2) 1.732 0.102 0.177 −0.233 0.007 0.002 0.009 −0.004 0.000 0.000
Body4 (Br-2) 0.271 0.128 0.221 0.069 0.004 0.002 0.002 −0.001 0.001 0.002

Body4 (Deck-2) 0.420 0.153 0.265 0.248 0.002 0.001 0.002 −0.001 0.000 0.000

2.2. Hydrodynamic Coefficient Models for the Multibody

The linear hydrodynamic force, such as diffraction force and radiation damping force,
for the multiple hydrodynamic bodies are estimated by the software AQWA [30] as 6 × 6
matrices with respect to the reference points, while the integrated added mass matrices for
each body from the added mass of each component are necessary, considering the effect of
KC number, Reynolds number and interaction as shown in Liu and Ishihara [31].

The hydrodynamic inertia and drag forces on the cylinder depend on the interaction
between cylinders, KC number and Reynolds number. The hydrodynamic coefficient
models were proposed by Liu and Ishihara [31] and Ishihara and Liu [32] to take into
account the influence of these factors on the added mass and drag coefficients for each
cylinder and are expressed as

iC
k
a(βk

0, KCk
0, ηk) = rCk

a(βk
0, KCk

0)× rγk
a × iη

k
a (1)

iC
k
d(βk

0, KCk
0, ηk) = rCk

d(βk
0, KCk

0)× rγk
d × iη

k
d (2)

where subscript i and r are the structure component i and referenced component r, super-
script k represents the direction for the hydrodynamic coefficients, which can be expressed
as the normal direction by n or the axial direction by t. iC

k
a(βk

0, KCk
0, ηk) and iC

k
d(βk

0, KCk
0, ηk)

represent the added mass and drag coefficients of the component i at βk and KCk in the k
direction including the contribution of the interaction effect. rCk

a(βk
0, KCk

0) and rCk
d(βk

0, KCk
0)

mean the representative Ca and Cd for the referenced component r at βk
0 and KCk

0 in the
k direction. Correction factors iη

k
a and iη

k
d are introduced to account for the interaction

between components. Correction factors rγk
a and rγk

d are functions of KC and Reynolds
numbers.

The global added mass for a rigid body can be obtained by integrating the distributed
hydrodynamic coefficients in the global coordinate system. In this study, the platform
is discretized to 79 elements and Ca of each element in the local coordinate system can
be computed according to Equation (1). The drag force by Morison’s equation is utilized
to account for the distributed viscous damping force induced by flow separation. The
integrated added mass coefficients for each body are expressed as 6× 6 matrices [Ca] and
the components in the global matrices of [Ca] are presented as

[Ca] =



Ca11 Ca11 Ca11 Ca11 Ca15 Ca11
Ca11 Ca22 Ca11 Ca24 Ca11 Ca11
Ca11 Ca11 Ca33 Ca11 Ca11 Ca11
Ca11 Ca42 Ca11 Ca44 Ca11 Ca11
Ca51 Ca11 Ca11 Ca11 Ca55 Ca11
Ca11 Ca11 Ca11 Ca11 Ca11 Ca66

 (3)

The simplified formulas to integrate distributed added mass were derived from
Ishihara and Zhang [33]. The off-diagonal components in the matrix are neglected except for
the components Ca24, Ca42, Ca15 and Ca51 due to the symmetry of the platform. However,
the geometry of the multibody is not symmetrical and all terms in the added mass matrix
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are necessary. The general formulas to integrate the distributed added mass are derived in
this study, which are applicable for any shape of the platform. Figure 4 presents the local
coordinate system xyz located on an element in the global coordinate system XYZ. x and y
are normal to z axis of the element and z corresponds to the axial direction.
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Figure 4. Local and global coordinate system for an element.

The added mass matrix of the element in the local coordinate system can be expressed as

Ci
a =

 Ci
axx Ci

axy Ci
axz

Ci
ayx Ci

ayy Ci
ayz

Ci
azx Ci

azy Ci
azz

 (4)

where the diagonal components Ci
axx, Ci

ayy and Ci
azz represent added mass coefficients in

the x, y and z directions, respectively. The off-diagonal components in the added mass
matrix account for the coupling between the motions in the two degrees of freedom. The
off-diagonal components of the Ci

a are 0 since the element of the platform is comprised of
the cylinders. In the global coordinate system, the matrix of added mass coefficients for an
element is calculated as

Ci
aXYZ = R×Ci

a ×R−1,

 Ci
a11 Ci

a12 Ci
a13

Ci
a21 Ci

a22 C1
a23

Ci
a31 Ci

a32 Ci
a33

 = R×

 Ci
axx Ci

axy Ci
axz

Ci
ayx Ci

ayy Ci
ayz

Ci
azx Ci

azy Ci
azz

×R−1

(5)
where R is the rotation matrix of three Euler angles between the local and global coordinates
and R−1 is the inverse rotation matrix. Each component in the [Ca] can be expressed as

Camn =
k
∑

i = 1
Ci

amn m, n = 1, 2, 3 Camn = 1
R2

k
∑

i = 1

[
Ci

a(m−1)nyi − Ci
a(m−2)nzi

]
m = 4 n = 4, 5, 6

Camn = 1
R

k
∑

i = 1

[
Ci

am(n−1)yi − Ci
am(n−2)zi

]
m = 1, 2, 3 n = 4 Camn = 1

R

k
∑
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[
Ci
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a(m−2)nxi

]
m = 5 n = 1, 2, 3

Camn = 1
R

k
∑

i = 1
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]
m = 1, 2, 3 n = 5 Camn = 1

R2

k
∑
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[
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]
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R

k
∑
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[
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am(n−5)yi

]
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R

k
∑

i = 1

[
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a(m−4)nxi − Ci
a(m−5)nyi

]
m = 6 n = 1, 2, 3

Camn = 1
R

k
∑

i = 1

[
Ci

a(m−1)nyi − Ci
a(m−2)nzi

]
m = 4 n = 1, 2, 3 Camn = 1

R2

k
∑

i = 1

[
Ci

a(m−4)nxi − Ci
a(m−5)nyi

]
m = 6 n = 4, 5, 6

(6)

where xi, yi and zi indicate the location of the element in the global coordinate system.
k is the number of elements. R is the characteristic length of the platform.
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2.3. Numerical Model for the Dynamic Analysis

The dynamic analysis for a floating platform is performed by solving the equation of
motion in the time domain as shown below.

M
{ ..

x
}
+ C

{ .
x
}
+ K{x} = {FB}+ {FR}+ {FG}+ {FM}+ {FH}+ {FW} (7)

where vector
{ ..

x
}

,
{ .

x
}

and {x} denote the acceleration, velocity and displacement in the
six degrees of freedom, respectively. M represents the mass matrix. C is the damping
matrix and K is the stiffness matrix. The hydrostatic loads on the platform refer to the
displaced water by the submerged body and its motion. This can be divided into a constant
integrated buoyancy force and a restoring force caused by the motion of the platform. On
the right side of Equation (7), {FB} presents the buoyancy force and {FG} indicates the
gravitational force; {FR}, {FH} and {FM} denote the restoring force., hydrodynamic force
and mooring tension, respectively. The last term {FW} is the aerodynamic load, which
is neglected since the wind turbine is simplified in the water tank test. As mentioned by
Ishihara and Zhang [33], the dynamic model for mooring lines performs better than the
quasi-static model for accurate prediction of mooring tension. The dynamic model using
lumped mass method is implemented, where the hydrodynamic loads of the mooring line
are computed by Morison’s equation, including hydrodynamic inertia force and drag force.

The buoyancy force is a vertical force and equals the gravity force of the displaced
water. It is calculated as

{FB} =
{

0, 0, ρwg∀
}T (8)

where ρw is density of water and ∀ is the volume of the submerged part of the platform.
The force that equilibrates the buoyancy force is the gravity force of the platform and is
obtained as shown in Equation (9), where m is the mass of the platform.

{FG} =
{

0, 0, mg
}T (9)

The restoring force is calculated as the product of hydrostatic stiffness and displace-
ment vector. The hydrostatic stiffness represents the static movement properties of the
platform when it is brought out of an equilibrium position by the external force or moment.
The translations in the surge and sway directions and the rotation in the yaw direction lead
to no resultant hydrostatic force. So, there are no hydrostatic terms in the surge, sway and
yaw directions. The vertical movement of the platform causes a change of buoyancy force,
which tends to return the structure back to the balance position. The restoring moments
arise with the pitch and roll motions since the center of gravity and center of buoyancy are
not situated on the same vertical line. The restoring force is calculated as Equation (10) and
hydrostatic stiffness is described as Equation (11).

{FR} = KR{x} (10)

KR =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 −ρwgAw 0 0 0
0 0 0 −FG × GMX 0 0
0 0 0 0 −FG × GMY 0
0 0 0 0 0 0

 (11)

where GMX and GMY are the meta-centric heights of the platform about the x and y axes,
respectively.

The hydrodynamic force, which refers to the dynamic forces and moments due to the
fluid on an oscillating platform in wave, can be written as

{FH} = {Fm,a}+
{

Fm,d
}
+ {Fw,F-K}+

{
Fw,d

}
+ {Fd} (12)
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where {Fm,a} and {Fd} represent hydrodynamic inertia force and drag force, respectively,{
Fm,d

}
is the radiation damping force. {Fw,F-K} and

{
Fw,d

}
are the Froude–Krylov (F-K)

force and diffraction force caused by the wave excitation, respectively.{Fm,a} is computed as

{Fm,a} = ρw∀[Ca]
{ ..

x
}

(13)

where ρw is density of water and ∀ is the volume of displaced water.
The distributed drag force on each element is expressed as Equation (14).

Fi
d =

1
2

ρωCi
d Ai(ui −

.
xi)
∣∣ui −

.
xi
∣∣ (14)

where Ci
d is the drag coefficient of the element in the corresponding direction, ui −

.
xi means

the relative velocity of the element to water particle, Ai is the characteristic area of the
element. In the combined wave and current condition, the drag force can be estimated by
an advanced hydrodynamic model proposed by Ishihara and Liu [32].

The elastic platform can be divided into several rigid bodies connected by elastic
beams. In the dynamic analysis of the platform, the wave-induced loads and radiation
damping force obtained by the potential theory are used for the multiple hydrodynamic
bodies and hydrodynamic interactions between each body are included in the hydrody-
namic force matrices. In the dynamic analysis, hydrodynamic forces obtained from the
potential theory are attached to the reference points as shown in Figure 3b. Similar to
the single body model, the global added mass matrix of each body is integrated from the
elemental added mass matrix Ci

a as shown in Equation (6). The drag force on each element
is computed as the distributed loads on the elements. Since Deck-2 is located above the
water surface, it does not experience any hydrodynamic load and only inertia load is
considered. The structural response of the elastic beams is obtained by a finite element
model in the time domain. The elastic beam is divided into a series of segments, which are
then modeled by straight massless elements with a node at each end. The element only
considers the stiffness of the beam in the axial and normal directions. The mass, weight and
buoyancy are lumped to the nodes. The shear forces and moments of the beam are applied
at the nodes at the end of elements. No hydrodynamic loads act on the elastic beams.

3. Results and Discussion

The structural response of a semi-submersible platform is analyzed using the exper-
imental and numerical elastic model. Section 3.1 describes the water tank test and envi-
ronment conditions. In Section 3.2, the dynamic responses of the platform are predicted
by the rigid and elastic models and are compared with the experiments. The predicted
sectional loads on the pontoon, brace and deck by the elastic model are presented and are
validated by the water tank test in Section 3.3. A simplified method is also proposed to
predict the load distribution. Finally, the local stress on the pontoon of the original platform
is investigated and the structural optimization is performed by connecting pontoons by a
short strut in Section 3.4.

3.1. Water Tank Test with an Elastic Platform

Figure 5a shows an overview of the elastic model with elastic beams and Figure 5b
presents the water tank test. Three connection components are developed as the elastic
structure using steel beams as described in detail in Section 2.1. The pontoon, brace and
deck are segmented as illustrated in Figure 5c. The beams are connected with the hull of
the platform by the flanges and bolts as shown in Figure 5d. The strain on the four surfaces
of the beam is monitored by the strain gauges. The sectional loads are then calculated
by M = ∆σI/y, where ∆σ is the different stress between the upper and lower surfaces,
I is the moment of inertia of the section about the neutral axis, y is the perpendicular
distance from the neutral axis to a point on the section. I/y is obtained by the experiments.
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The sectional loads at the ends and middle locations of the beams are measured for the
validation.
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Figure 5. Overview of the elastic model and the water tank test.

Figure 6 illustrates the configuration of the platform and mooring lines in the water
tank test. The platform is stationed by four catenary mooring lines, where the mooring
lines ML1 and ML2 connect the platform by the same fairlead. The length of the mooring
lines is 10.5 m. The arrangement of the mooring lines is different from the actual platform
due to the limitation of the water tank. The motion of the platform, mooring tension and
sectional loads on the elastic beams are measured to capture the dynamic response of
the platform. The sectional loads, such as the bending moments, are calculated using the
measured strain obtained by the strain gauges pasted on the beams.
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Table 4 lists the environmental conditions used in the experiments. Free decay tests
identify the natural periods of the platform in the three degrees of freedom (DOFs). In the
regular wave cases, the response amplitude operators (RAOs) are measured at two wave
heights and several wave periods. In irregular wave cases, the waves are generated based
on the Pierson–Moskowitz spectrum (PM spectrum) with two significant wave heights of
0.05 m and 0.195 m and a peak wave period of 2.16 s. The wave elevations are measured
at a location 7.29 m away from the center of the platform in the upstream. All waves
propagate in the positive surge direction.

Table 4. Environmental conditions of the tests.

No. Case Wave Height (m) Wave Periods (s) Note

1 Free decay - - Stillwater
2 Regular waves 0.05, 0.15 1.03~3.10
3 Irregular waves 0.05, 0.195 2.16 PM spectrum

3.2. Dynamic Response of the Platform and Mooring Lines

The natural periods for both rigid and elastic models are evaluated by means of
decay simulation and are compared to the experimental data in the surge, heave and pitch
directions. In the still water condition, the initial offset in each direction is imposed and the
platform is then released to decay freely. The responses in the first five periods are used
to evaluate the natural periods. Figure 7 shows the natural periods of the surge, heave
and pitch motions. Both elastic and rigid models show the same natural periods and agree
well with those by the water tank test since the stiffness of platform is determined by the
restoring force and mooring lines which are the same for the elastic and rigid models. The
masses of elastic and rigid models in the numerical simulations are kept the same, and
thus the natural periods of elastic and rigid platforms are the same.
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The dynamic responses of the platform in the regular waves are characterized by
RAOs, in which the amplitudes of platform motion and mooring tension are normalized
by the wave amplitudes as

RAOs =
A

H/2
(15)

where A is the amplitude of dynamic response for the platform motion, mooring tension
and sectional loads, and H refers to the incident regular wave height.

The normalized time history of dynamic response of the platform is also expressed as

x∗(t) =
x(t)

Hs/2
(16)
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where x(t) is the time history of displacement, rotation, mooring tension, moment and
stress. Hs denotes the significant wave height in the irregular wave and the wave height
of the regular wave, and x∗(t) is used to calculate the PSD (power spectral density) of the
dynamic response in irregular wave cases.

The wave heights and wave periods of the regular waves are obtained from the
measurements in the water tank tests. The simulations in the time-domain are performed
for 100 s to obtain the desired steady-state responses. Figure 8 shows the RAOs of the
surge, heave and pitch of the platform in the regular wave conditions, and the tension of
the mooring line ML4 at the fairlead. The numerical results show good agreement with the
experimental data. They indicate that the proposed nonlinear hydrodynamic model works
well for the multibody model. The predicted responses by the rigid and elastic models
show little difference, as mentioned by Guignier et al. [18], which implies that the elasticity
of the model has no effect on the platform motion and mooring tension.
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Figure 8. The predicted and measured RAOs (response amplitude operators) of the dynamic responses in the regular waves.

The dynamic responses of the rigid and elastic models in the irregular waves are
also predicted. The measured wave elevations are used as the inputs of the numerical
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simulations. The simulation time is 99 s, which is the same as the experiment. The
predicted power spectral density (PSD) of the normalized platform motion and mooring
tension are shown in Figure 9. Similar to the regular wave cases, the rigid and elastic
models give the same results for the platform motion and mooring tension. The lower
frequency peak of 0.134 Hz is observed in the PSD of surge motion, which corresponds to
the natural frequency of the surge motion. The peaks at 0.464 Hz observed in the PSD of
platform motion are excited by the wave. Similarly, the first peak in the PSD of mooring
tension corresponds to the low frequency of surge motion and the second peak is excited
by the wave, respectively. The predicted responses show favorable agreement with the
experimental data.
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3.3. Sectional Loads on the Platform

The sectional loads on the elastic beams at the specified sections are computed by
the finite element analysis. The comparison between the RAOs from experiments and the
numerical model is presented in Figure 10. The bending moment My is induced by the
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horizontal loads acting on the side column and pontoon, while the bending moment Mx
is caused by the vertical loads acting on the heave plates and pontoons. The normalized
bending moments Mx and My of the beam are consistent for different wave heights since
the pontoon, brace and deck response linearly. The sectional loads on the pontoon are much
larger than those on the brace and deck, which indicates that the pontoon is the critical
structure to transfer loads between columns in the horizontal plane. The cracks on the
pontoons of the 7 MW FOWT used in the Fukushima demonstration project were mainly
caused by the bending moment My. The bending moment Mx for all the elastic elements
of the platform is smaller compared to the bending moment My, which is attributed to the
side columns subject to the wave loads as shown in Figure 3. On the other hand, the wave
loads acting on the platform in the vertical direction are relatively small due to the deep
draft. It implies that the horizontal loads on the slender element of the platform caused by
the side column should be paid attention to. The influence of stiffness of the element on the
sectional loads is neglected since they are only amplified near the resonant frequencies as
mentioned by Ishihara et al. [8]. The resonant responses of the elements are not observed
in the field measurements and the water tank tests since the stiffness of the platform used
in the demonstration is high and the resonant frequency is far away from the frequency
range of the wave energy.

Energies 2021, 14, x FOR PEER REVIEW 14 of 22 
 

 

horizontal loads acting on the side column and pontoon, while the bending moment 
xM  is caused by the vertical loads acting on the heave plates and pontoons. The nor-

malized bending moments xM  and yM  of the beam are consistent for different wave 
heights since the pontoon, brace and deck response linearly. The sectional loads on the 
pontoon are much larger than those on the brace and deck, which indicates that the 
pontoon is the critical structure to transfer loads between columns in the horizontal 
plane. The cracks on the pontoons of the 7 MW FOWT used in the Fukushima demon-
stration project were mainly caused by the bending moment yM . The bending moment 

xM  for all the elastic elements of the platform is smaller compared to the bending mo-
ment yM , which is attributed to the side columns subject to the wave loads as shown in 
Figure 3. On the other hand, the wave loads acting on the platform in the vertical direc-
tion are relatively small due to the deep draft. It implies that the horizontal loads on the 
slender element of the platform caused by the side column should be paid attention to. 
The influence of stiffness of the element on the sectional loads is neglected since they are 
only amplified near the resonant frequencies as mentioned by Ishihara et al. [8]. The 
resonant responses of the elements are not observed in the field measurements and the 
water tank tests since the stiffness of the platform used in the demonstration is high and 
the resonant frequency is far away from the frequency range of the wave energy. 

0

10

20

30

40

50

1 1.5 2 2.5 3

Exp. (H=0.05m)
Exp. (H=0.15m)
Cal.  (H=0.05m)
Cal.  (H=0.15m)

Pn
-2

A
 M

x 
(N

m
/m

)

Periods (s)
7.75 11.62 19.37 23.24

Full scale
15.49

 

0

10

20

30

40

50

1 1.5 2 2.5 3

Exp. (H=0.05m)
Exp. (H=0.15m)
Cal.  (H=0.05m)
Cal.  (H=0.15m)

Pn
-2

A
 M

y 
(N

m
/m

)

Periods (s)
7.75 11.62 19.37 23.24

Full scale
15.49

 

(a) xM  at section Pn-2A (b) yM  at section Pn-2A 

0

1

2

3

1 1.5 2 2.5 3

Exp. (H=0.05m)
Exp. (H=0.15m)
Cal.  (H=0.05m)
Cal.  (H=0.15m)

Br
-2

A
 M

x 
(N

m
/m

)

Periods (s)
7.75 11.62 19.37 23.24

Full scale
15.49

 

0

1

2

3

1 1.5 2 2.5 3

Exp. (H=0.05m)
Exp. (H=0.15m)
Cal.  (H=0.05m)
Cal.  (H=0.15m)

Br
-2

A
 M

y 
(N

m
/m

)

Periods (s)
7.75 11.62 19.37 23.24

Full scale
15.49

 

(c) xM  at section Br-2A (d) yM  at section Br-2A 

Figure 10. Cont.



Energies 2021, 14, 182 15 of 22
Energies 2021, 14, x FOR PEER REVIEW 15 of 22 
 

 

0

2.5

5

7.5

10

1 1.5 2 2.5 3

Exp. (H=0.05m)
Exp. (H=0.15m)
Cal.  (H=0.05m)
Cal.  (H=0.15m)

D
ec

k-
2A

 M
x 

(N
m

/m
)

Periods (s)
7.75 11.62 19.37 23.24

Full scale
15.49

 

0

2.5

5

7.5

10

1 1.5 2 2.5 3

Exp. (H=0.05m)
Exp. (H=0.15m)
Cal.  (H=0.05m)
Cal.  (H=0.15m)

D
ec

k-
2A

 M
y 

(N
m

/m
)

Periods (s)
7.75 11.62 19.37 23.24

Full scale
15.49

 

(e) xM  at section Deck-2A (f) yM  at section Deck-2A 

Figure 10. RAOs of moments about the local coordinate axis at specified sections. 

Figure 11 presents the PSD of the normalized yM  at the sections Pn-2A and 
Deck-2A. The predicted bending moments show favorable agreement with the measured 
moments. The underestimation of yM  at the section Pn-2A by the numerical model is 
observed in the low frequency range. This may be due to the second-order hydrody-
namic loads, which is not considered in the numerical model. 

10-3

10-2

10-1

100

101

102

103

104

0 0.5 1 1.5

Exp. (H=0.05m)
Exp.(H=0.195m)
Cal. (H=0.05m)
Cal.(H=0.195m)

Pn
-2

A
 M

y 
((N

m
)2 /m

2 /H
z)

Frequency (Hz)
0 0.0065 0.129 0.194

Full scale

 

10-3

10-2

10-1

100

101

102

103

104

0 0.5 1 1.5

Exp. (H=0.05m)
Exp.(H=0.195m)
Cal. (H=0.05m)
Cal.(H=0.195m)

D
ec

k-
2A

 M
y 

((N
m

)2 /m
2 /H

z)

Frequency (Hz)
0 0.0065 0.129 0.194

Full scale

 

(a) PSD of yM  at section Pn-2A  (b) PSD of yM  at section Deck-2A 
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The sectional load at the specified sections can be evaluated by the multibody mod-
el. It is possible to increase the number of bodies to calculate the sectional load at any 
section. However, the increase of bodies may lead to the convergent problem of the nu-
merical model. To estimate the distribution of sectional loads on a beam, the bending 
moment yM  on the beam is assumed as a function of z and is expressed as 
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Figure 10. RAOs of moments about the local coordinate axis at specified sections.

Figure 11 presents the PSD of the normalized My at the sections Pn-2A and Deck-2A.
The predicted bending moments show favorable agreement with the measured moments.
The underestimation of My at the section Pn-2A by the numerical model is observed in the
low frequency range. This may be due to the second-order hydrodynamic loads, which is
not considered in the numerical model.
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The sectional load at the specified sections can be evaluated by the multibody mod-
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section. However, the increase of bodies may lead to the convergent problem of the nu-
merical model. To estimate the distribution of sectional loads on a beam, the bending 
moment yM  on the beam is assumed as a function of z and is expressed as 

1 0
0( ) y y

y y

M M
M z M z

L
−

= +  (17)
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The sectional load at the specified sections can be evaluated by the multibody model.
It is possible to increase the number of bodies to calculate the sectional load at any section.
However, the increase of bodies may lead to the convergent problem of the numerical
model. To estimate the distribution of sectional loads on a beam, the bending moment My
on the beam is assumed as a function of z and is expressed as

My(z) = M0
y + z

M1
y −M0

y

L
(17)

where z means the distance between the section for moment prediction and the end of the
beam close to center column, M0

y and M1
y are the bending moment My at the end sections of
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the beam close to the center column and the side column, respectively, and L is the length
of the beam.

Figure 12 shows the bending moments on Pn-2, Br-2 and Deck-2. The horizontal axes
in Figure 12 denote the distance from the end of the beams close to the center column and
are normalized by the length of the beams. It is found that the distributions of My on Pn-2,
Br-2 and Deck-2 are almost linear and the predicted bending moments agree well with
those obtained from the water tank test.
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3.4. Structural Optimization

The pontoon is the most important structure for connecting the center column and the
side column as discussed in Section 3.3. Recently, concepts of a platform without decks
and braces have been proposed, as shown in the 7 MW FOWT used in the Fukushima
demonstration project. The deck and brace provide the stiffness of the platform, but they
also increase the complexity of manufacturing, especially for the welding of the diagonal
brace. To optimize the platform, the sectional loads on the pontoon are investigated based
on the four models as shown in Table 5. The baseline model removes all decks and braces
in the original model used in the Fukushima demonstration project. The struts connecting
pontoons are installed in the optimized model, but the braces and decks are removed



Energies 2021, 14, 182 17 of 22

from the original model. The full model is equipped with the decks, braces, and struts as
shown in Figure 13. To keep the mass and external load for these four models the same,
the mass and hydrodynamic loads on the struts are neglected. In the numerical models,
the decks and braces are disconnected from the central column to simulate the baseline
model, but the mass and hydrodynamic load are included. This means that the end nodes
of the elastic deck and brace at the cross sections Deck-2A are Br-2A are disconnected at
the central column.

Table 5. Description of four models used for the structural optimization of the platform.

Model Deck and Brace Strut Description of Model

Baseline model 7 7 Platform without deck, brace and strut
Original model # 7 Platform with deck and brace, but without strut

Optimized model 7 # Platform with strut, but without deck and brace
Full model # # Platform with deck, brace and strut

Energies 2021, 14, x FOR PEER REVIEW 17 of 22 
 

 

simulate the baseline model, but the mass and hydrodynamic load are included. This 
means that the end nodes of the elastic deck and brace at the cross sections Deck-2A are 
Br-2A are disconnected at the central column. 

Table 5. Description of four models used for the structural optimization of the platform. 

Model Deck and 
Brace 

Strut Description of Model 

Baseline model   Platform without deck, brace and strut 
Original model   Platform with deck and brace, but without strut 

Optimized model   Platform with strut, but without deck and brace 
Full model   Platform with deck, brace and strut 

 
Figure 13. Overview of the platform with brace, deck and strut. 

Figure 14 shows the predicted PSD of normalized platform motions and mooring 
tensions of four models in the irregular wave with the wave height of 0.15 m. It is noticed 
that the predicted dynamic responses and mooring tensions by the numerical models are 
almost the same. This implies that the change of stiffness does not influence the platform 
motions and mooring tensions. 

10-5

10-4

10-3

10-2

10-1

100

101

0 0.5 1 1.5

Cal. Baseline model
Cal. Original model
Cal. Optimized model
Cal. Full model

Su
rg

e 
(m

2 /m
2 /H

z)

Frequency (Hz)
0 0.0065 0.129 0.194

Full scale

 

10-5

10-4

10-3

10-2

10-1

100

101

0 0.5 1 1.5

Cal. Baseline model
Cal. Original model
Cal. Optimized model
Cal. Full model

H
ea

ve
 (m

2 /m
2 /H

z)

Frequency (Hz)
0 0.0065 0.129 0.194

Full scale

 
(a) surge (b) heave 

Figure 13. Overview of the platform with brace, deck and strut.

Figure 14 shows the predicted PSD of normalized platform motions and mooring
tensions of four models in the irregular wave with the wave height of 0.15 m. It is noticed
that the predicted dynamic responses and mooring tensions by the numerical models are
almost the same. This implies that the change of stiffness does not influence the platform
motions and mooring tensions.
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Figure 14. Comparison of the normalized dynamic responses of three platforms in the irregular waves (H = 0.195 m, T = 2.16 s).

Figure 15 illustrates the RAOs of bending moment Mx and My at the section Pn-2A for
the three models in regular waves with a wave height of 0.15 m. It is found that the bending
moments Mx of the baseline and optimized models, as shown in Figure 15a, are larger than
those of the original and full models, which is due to the removal of the brace and deck. In
the original and full models, the deck, brace and pontoon constitute a frame structure and
provide stiffness to resist the vertical loads. The bending moments My of the optimized
and full models, as shown in Figure 15b, are much smaller than those of the baseline
and original models due to the installed strut. This implies that the strut connecting the
pontoons has a slight influence on the bending moment Mx, but significantly reduces the
bending moment My at the section Pn-2A. Oppositely, the brace and deck decrease the
bending moment Mx.
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Pn-2A for the three models in regular waves with a wave height of 0.15 m. It is found that 
the bending moments xM  of the baseline and optimized models, as shown in Figure 
15a, are larger than those of the original and full models, which is due to the removal of 
the brace and deck. In the original and full models, the deck, brace and pontoon consti-
tute a frame structure and provide stiffness to resist the vertical loads. The bending 
moments yM  of the optimized and full models, as shown in Figure 15b, are much 
smaller than those of the baseline and original models due to the installed strut. This 
implies that the strut connecting the pontoons has a slight influence on the bending 
moment xM , but significantly reduces the bending moment yM  at the section Pn-2A. 
Oppositely, the brace and deck decrease the bending moment xM . 
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Figure 16 presents the PSD of the moment at the section Pn-2A in the irregular wave
with a wave height of 0.15 m. The conclusions are similar to those for the regular waves,
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that is, the bending moment Mx decreases by the brace and deck, while the bending
moment My is primarily reduced by the strut.
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For a given location on the cross section, axial stress can be calculated as

σ =
Fz

A
+

Mxy
Ix

+
Myx

Iy
(18)

where Fz is the axial force, A is the area of cross section, Mx and My denote the bending
moments around x and y axes, Ix and Iy are the inertial moments of the cross section, and
x and y indicate the coordinate in the local coordinate system. The stress at the points A, B
and C in the section Pn-2A as shown in Figure 17 are calculated based on Equation (18).
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Figure 18 presents the standard deviation of the normalized stress, which represents
the fatigue load at the points A, B and C in the irregular wave with a wave height of 0.15 m.
The stress in the cross section is caused by the axial force and moments. The stress at the
point A is obtained from Fz and Mx, while the stress at the point C is obtained from Fz and
My. Point B is located on the corner of the upper and side edge, where Fz, Mx and My
contribute to the stress. The largest standard deviation of the stress occurs in the baseline
model, since the platform is designed without the brace, deck and strut. In the original
model, the value of stress at point C is almost the same as stress at point B. This implies
the fatigue loads in the section are dominated by the horizontal loads. The stresses in the
optimized and full models show the small value, which indicates that adding the strut is
more effective than adding the deck and brace to decrease the fatigue loads on the pontoon.
The steel material of the optimized model can be reduced by 10% compared to the original
model since the braces and decks are removed.
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4. Conclusions

The dynamic responses of an elastic semi-submersible platform were investigated,
such as the platform motion, mooring tension and sectional loads on the element. The
conclusions are obtained as follows:

1. The nonlinear hydrodynamic coefficient models for the multibody are proposed
considering the effects of Reynolds and KC numbers on the added mass and drag
coefficients. The predicted dynamic response and mooring tension of the elastic
platform by the proposed model show good agreement with the experimental data
obtained from the water tank test. The influence of structural stiffness on the dynamic
response of the platform is negligible since the stiffness of the platform used in the
demonstration is quite high.

2. The sectional loads on the deck, brace and pontoon were investigated using multiple
hydrodynamic bodies. The bending moments due to horizontal hydrodynamic loads
are much larger than those caused by the vertical hydrodynamic loads. A linear
formula is proposed to predict the distribution of the sectional loads on the connection
element.

3. The sectional load on the pontoon was analyzed by the four platforms with and
without the braces, decks and struts. The largest contribution to the fatigue load of
the pontoon comes from the horizontal loads and the struts significantly reduce the
stress on the pontoon, while the contributions from the decks and braces are limited.
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